Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37868201

RESUMO

The emergence of multidrug-resistant (MDR) Klebsiella pneumoniae remains a global health threat due to its alarming rates of becoming resistant to antibiotics. Therefore, identifying plant-based treatment options to target this pathogen's virulence factors is a priority. This study examined the antivirulence activities of twelve plant extracts obtained from three South African medicinal plants (Lippia javanica, Carpobrotus dimidiatus, and Helichrysum populifolium) against carbapenem-resistant (CBR) and extended-spectrum beta-lactamase (ESBL) positive K. pneumoniae strains. The plant extracts (ethyl acetate, dichloromethane, methanol, and water) were validated for their inhibitory activities against bacterial growth and virulence factors such as biofilm formation, exopolysaccharide (EPS) production, curli expression, and hypermucoviscosity. The potent extract on K. pneumoniae biofilm was observed with a scanning electron microscope (SEM), while exopolysaccharide topography and surface parameters were observed using atomic force microscopy (AFM). Chemical profiling of the potent extract in vitro was analysed using liquid chromatography-mass spectrometry (LC-MS). Results revealed a noteworthy minimum inhibitory concentration (MIC) value for the C. dimidiatus dichloromethane extract at 0.78 mg/mL on CBR- K. pneumoniae. L. javanica (ethyl acetate) showed the highest cell attachment inhibition (67.25%) for CBR- K. pneumoniae. SEM correlated the in-vitro findings, evidenced by a significant alteration of the biofilm architecture. The highest EPS reduction of 34.18% was also noted for L. javanica (ethyl acetate) and correlated by noticeable changes observed using AFM. L. javanica (ethyl acetate) further reduced hypermucoviscosity to the least length mucoid string (1 mm-2 mm) at 1.00 mg/mL on both strains. C. dimidiatus (aqueous) showed biofilm inhibition of 45.91% for the ESBL-positive K. pneumoniae and inhibited curli expression at 0.50 mg/mL in both K. pneumoniae strains as observed for H. populifolium (aqueous) extract. Chemical profiling of L. javanica (ethyl acetate), C. dimidiatus (aqueous), and H. populifolium (aqueous) identified diterpene (10.29%), hydroxy-dimethoxyflavone (10.24%), and 4,5-dicaffeoylquinic acid (13.41%), respectively, as dominant compounds. Overall, the ethyl acetate extract of L. javanica revealed potent antivirulence properties against the studied MDR K. pneumoniae strains. Hence, it is a promising medicinal plant that can be investigated further to develop alternative therapy for managing K. pneumoniae-associated infections.

3.
J Biomol Struct Dyn ; 41(19): 9938-9956, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36416609

RESUMO

Klebsiella pneumoniae is one of the perturbing multidrug resistant (MDR) and ESKAPE pathogens contributing to the mounting morbidity, mortality and extended rate of hospitalization. Its virulence, often regulated by quorum sensing (QS) reinforces the need to explore alternative and prospective antivirulence agents, relatively from plants secondary metabolites. Computer aided drug discovery using molecular modelling techniques offers advantage to investigate prospective drugs to combat MDR pathogens. Thus, this study employed virtual screening of selected terpenes and flavonoids from medicinal plants to interrupt the QS associated SdiA protein in K. pneumoniae to attenuate its virulence. 4LFU was used as a template to model the structure of SdiA. ProCheck, Verify3D, Ramachandran plot scores, and ProSA-Web all attested to the model's good quality. Since SdiA protein in K. pneumoniae leads to the expression of virulence, 31 prospective bioactive compounds were docked for antagonistic potential. The stability of the protein-ligand complex, atomic motions and inter-atomic interactions were further investigated through molecular dynamics simulations (MDS) at 100 ns production runs. The binding free energy was estimated using the molecular mechanics/poisson-boltzmann surface area (MM/PB-SA). Furthermore, the drug-likeness properties of the studied compounds were validated. Docking studies showed phytol possesses the highest binding affinity (-9.205 kcal/mol) while glycitein had -9.752 kcal/mol highest docking score. The MDS of the protein in complex with the best-docked compounds revealed phytol with the highest binding energy of -44.2625 kcal/mol, a low root-mean-square deviation (RMSD) value of 1.54 Å and root-mean-square fluctuation (RMSF) score of 1.78 Å. Analysis of the drug-likeness properties prediction and bioavailability of these compounds revealed their conformed activity to lipinski's rules with bioavailability scores of 0.55 F. The studied terpenes and flavonoids compounds effectively thwart SdiA protein, therefore regulate inter- or intra cellular communication and associated in virulence Enterobacteriaceae, serving as prospective antivirulence drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Flavonoides , Klebsiella pneumoniae , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Virulência , Simulação de Dinâmica Molecular , Fitol
4.
Plants (Basel) ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684202

RESUMO

The ability of Klebsiella pneumoniae to form biofilm renders the pathogen recalcitrant to various antibiotics. The difficulty in managing K. pneumoniae related chronic infections is due to its biofilm-forming ability and associated virulence factors, necessitating the development of efficient strategies to control virulence factors. This study aimed at evaluating the inhibitory potential of selected phytochemical compounds on biofilm-associated virulence factors in K. pneumoniae, as well as authenticating their antibiofilm activity. Five phytochemical compounds (alpha-terpinene, camphene, fisetin, glycitein and phytol) were evaluated for their antibacterial and anti-biofilm-associated virulence factors such as exopolysaccharides, curli fibers, and hypermucoviscosity against carbapenem-resistant and extended-spectrum beta-lactamase-positive K. pneumoniae strains. The antibiofilm potential of these compounds was evaluated at initial cell attachment, microcolony formation and mature biofilm formation, then validated by in situ visualization using scanning electron microscopy (SEM). Exopolysaccharide surface topography was characterized using atomic force microscopy (AFM). The antibacterial activity of the compounds confirmed fisetin as the best anti-carbapenem-resistant K. pneumoniae, demonstrating a minimum inhibitory concentration (MIC) value of 0.0625 mg/mL. Phytol, glycitein and α-terpinene showed MIC values of 0.125 mg/mL for both strains. The assessment of the compounds for anti-virulence activity (exopolysaccharide reduction) revealed an up to 65.91% reduction in phytol and camphene. Atomic force microscopy detected marked differences between the topographies of untreated and treated (camphene and phytol) exopolysaccharides. Curli expression was inhibited at both 0.5 and 1.0 mg/mL by phytol, glycitein, fisetin and quercetin. The hypermucoviscosity was reduced by phytol, glycitein, and fisetin to the shortest mucoid string (1 mm) at 1 mg/mL. Phytol showed the highest antiadhesion activity against carbapenem-resistant and extended-spectrum beta-lactamase-positive K. pneumoniae (54.71% and 50.05%), respectively. Scanning electron microscopy correlated the in vitro findings, with phytol significantly altering the biofilm architecture. Phytol has antibiofilm and antivirulence potential against the highly virulent K. pneumoniae strains, revealing it as a potential lead compound for the management of K. pneumoniae-associated infections.

5.
Heliyon ; 8(4): e09303, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35520625

RESUMO

The crisis of antibiotic resistance necessitates the search of phytochemicals as potential antibacterial, anti-quorum sensing and antibiofilm forming agents. For the present study, fifteen (15) selected medicinal plants were evaluated to inhibit the biological activities of multi-drug resistant (MDR) pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis) associated with diabetic foot ulcer. Antibacterial activities revealed noteworthy minimum inhibitory concentration (MIC) values ≤1 mg/mL for thirteen (13) out of the sixty (60) plant extracts screened. The potent extracts included Euclea natalensis ethyl acetate (0.25 mg/mL), Aloe ferox methanol (0.5 mg/ml) and Warburgia salutaris aqueous (0.5 mg/mL) extracts. Chemical profiling of the active extracts using gas chromatography-mass spectrometry (GC-MS) identified neophytadiene, guanosine, squalene, cis megastigma-5,8-diene-4-one and sorbitol as prevalent compounds among the active extracts. Anti-quorum sensing activities of E. natalensis (ethyl acetate), A. ferox (methanol) and W. salutaris (aqueous) extracts ranged from 4.81 - 58.34% with E. natalensis (ethyl-acetate) showing the highest activity. Molecular docking against CviR protein showed selected compounds having high docking scores with sorbitol showing the highest score of -7.04 kcal/mol. Warburgia salutaris aqueous extract exhibited the highest biofilm inhibition (73%) against E. coli. Euclea natalensis, Aloe ferox and Warburgia salutaris compounds act as antagonist of N-acyl homoserine lactone (AHL) signaling, thus may serve as candidates in antipathogenic and antibiofilm phytomedicine development for MDR foot ulcer bacterial pathogens.

6.
Antibiotics (Basel) ; 10(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198845

RESUMO

Bacterial quorum sensing (QS) system regulates pathogenesis, virulence, and biofilm formation, and together they contribute to nosocomial infections. Opportunistic pathogens, such as Pseudomonas aeruginosa, rely on QS for regulating virulence factors. Therefore, blocking the QS system may aid management of various infectious diseases caused by human pathogens. Plant secondary metabolites can thwart bacterial colonization and virulence. As such, this study was undertaken to evaluate three extracts from the medicinal plant, Melianthus comosus, from which phytochemical compounds were identified with potential to inhibit QS-dependent virulence factors in P. aeruginosa. Chemical profiling of the three extracts identified 1,2-benzene dicarboxylic acid, diethyl ester, neophytadiene and hexadecanoic acid as the common compounds. Validation of antibacterial activity confirmed the same MIC values of 0.78 mg/mL for aqueous, methanol and dichloromethane extracts while selected guanosine showed MIC 0.031 mg/mL. Molecular docking analysis showed anti-quorum sensing (AQS) potential of guanosine binding to CviR' and 2UV0 proteins with varying docking scores of -5.969 and -8.376 kcal/mol, respectively. Guanosine inhibited biofilm cell attachment and biofilm development at 78.88% and 34.85%, respectively. Significant swimming and swarming motility restriction of P. aeruginosa were observed at the highest concentration of plant extracts and guanosine. Overall, guanosine revealed the best swarming motility restrictions. M. comosus extracts and guanosine have shown clear antibacterial effects and subsequent reduction of QS-dependent virulence activities against P.aeruginosa. Therefore, they could be ideal candidates in the search for antipathogenic drugs to combat P.aeruginosa infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...